
Developments in Integration of Simulation Tools

 John G Pearce

ISIM International Simulation Limited

161 Claremont Road

Salford, M6 8PA, UK

John.Pearce@isimsimulation.com

Ryllan J Kraft

ISIM International Simulation Limited

1 St Crispins Close

London, NW3 2QF, UK

Ryllan.Kraft@isimsimulation.com

Key Words: Multi-discipline, Multi-tool, Large-scale, ESL,

VTB

Abstract

 The paper presents recent developments in an ongoing

project to integrate the ESL simulation tool with the Virtual

Test Bed (VTB). The VTB offers a framework for the

development of large-scale multi-discipline simulations. It

provides an environment in which to build a simulation and

is capable of supporting different solution methods (or

“Solvers”). The objective of the present project is to make

the particular features of ESL available to users of the VTB

through the provision of an ESL Solver. This is achieved by

making ESL simulation components available in VTB and

seamlessly linking to the external ESL software for

compilation and execution, with data being fed back to the

VTB for display. A previous paper described the basic

approach and initial progress – the present paper reports

further progress and concentrates on modularization aspects.

The VTB provides a means of partitioning a large schematic

diagram into interconnected subsystems. This feature works

quite naturally with ESL schematics. A standard mechanism

is also provided for creating multi-input, multi-output

modules from schematic diagrams comprising

interconnected simulation components. This facility can be

used to map a VTB schematic comprising interconnected

ESL components into a VTB module, implemented as an

ESL submodel, which can be used in other schematics. A

third strand has been the implementation of a method to

import external ESL textual submodels into the VTB. All

these developments represent a significant advancement of

the integration of the two simulation tools and provide

valuable pointers to a generalized approach for other

solvers. The developments are illustrated with appropriate

examples.

1. INTRODUCTION

 The simulation of very large complex multi-discipline

systems requires the use of a wide range of different tools.

Specialized circuit modelling tools may be appropriate for

those parts of the system comprising electrical components,

whereas other tools are more suited to dynamics and

mechanical areas of the system. Even within a given

discipline, different types of model are used – natural

coupled schematic representations; signal flow diagrams;

state-space and differential equation representations. The

objective of the current research is to demonstrate that

different simulation tools can be integrated in a manner

which provides the user with a unified environment from

which the tools can be accessed in a natural and convenient

manner. In order to achieve this objective, an initiative has

been undertaken to integrate two specific simulation tools –

the USC Virtual Test Bed (VTB) and ISIM’s ESL

simulation tool.

 The VTB [Dougal 2005] is a software environment for

developing simulations of large scale multidisciplinary

dynamic systems. It allows alternative designs to be

analysed and tested before being committed to manufacture.

The main application that is driving the development of the

VTB is a need to model advanced power systems for navy

ships. In such systems there are many different energy

generation and storage devices including nuclear, fuel cells

and gas turbines. The distribution networks are also of

unconventional design having DC power buses and high

numbers of interconnections that can be rapidly

reconfigured. The VTB provides a number of in-built

solvers, offering alternative solution methods, however, the

particular feature that commends it to this study is the

provision an interface for user created solvers. Thus it is

relatively easy to introduce alternative methods of both

system specification and simulation solution.

 ESL [Crosbie et al 1981, Hay et al 1994, Pearce and

Crosbie 2000] is an advanced high-level simulation

language for modelling large-scale systems from a variety

of disciplines. ESL comprises two components: the

language itself and a graphical user interface - the Integrated

Simulation Environment (ISE). ESL is a continuous system

simulation language and is used for modelling non-linear

dynamic systems which are usually described by ordinary

and partial differential equations. It has advanced features

for accurately processing discontinuities and the capability

of implementing multi-rate simulations. ISE provides the

environment from which all stages of the simulation process

can be managed. The software was developed mainly

mailto:John.Pearce@isimsimulation.com
mailto:Ryllan.Kraft@isimsimulation.com

through a series of contracts with ESTEC - the European

Space Research and Technology Centre - part of ESA with

additional support from various industrial simulation

consultancy activities.

 The first stage of the integration project saw the

establishment of basic essential functionality – the provision

of ESL entities in VTB and a transparent mechanism of

interfacing with the external ESL software. The present

paper is concerned with aspects of modularization and

demonstrates how VTB’s inherent modular structures may

be mapped onto ESL’s submodel structures.

2. EARLIER WORK

 Earlier work [Pearce, 2007, 2008] introduced the ability

to include complete ESL models in VTB schematics using

COM technology (with VTB 2003) and later .NET

technology (VTB Pro. and VTB 2009) as self-contained

VTB signal entities. However such ESL models could only

be coupled to other signal entities and gave the user no

access to their internal structure from the VTB.

 As part of a current ONR funded research project, ways

of achieving greater integration between simulation tools are

being investigated through the particular example of the

VTB – ESL relationship. These developments are based on

VTB 2011. During the first phase of this project the

following objectives have been achieved [Pearce and Kraft

2011]:

• Provision of a set of entities in the VTB corresponding

to the standard ESL simulation elements. These are

displayed in the VTB Schematic Editor when the ESL

Solver is selected on the Component Library filter.

• Ability to create a schematic diagram by placing and

connecting ESL entities (in this phase of the project

there is no connection to non ESL entities).

• Ability to specify ESL entity parameters (corresponding

to ESL simulation element attributes).

• Ability to select ESL entity input and output ports for

graph plotting.

• Ability to specify ESL Solver parameters

(corresponding to ESL Simulation Parameters –

integration method, error tolerances number of

integration steps per communication interval etc).

• Interactive running of the simulation including the

ability to pause and dynamically change ESL entity and

ESL Solver parameters.

• Ability to extend the standard set of ESL entities by

specifying the ESL code associated with a new entity

through an XML attribute.

The overall scheme of achieving these objectives is

illustrated in Figure 1. Portions of a VTB schematic diagram

comprising ESL components are recognised and mapped

into ESL source code which is externally compiled and

packaged as a .NET assembly. During the running of the

simulation, the assembly appears to the VTB as a single

component communicating with the rest of the schematic at

step points. The whole of this process is fully automatic and

takes place behind the scenes once a simulation run is

initiated.

ESL code

ESL model

representation

processing

code

generation

VTB Schematic

Compilation – .NET

assembly generation ESL model

representation effectively

replaces selection and is

run under ESL solver

Figure 1 VTB – ESL Integration

3. MODULARIZATION

 As it would be cumbersome to represent a very large

simulation as a single schematic diagram, procedures are

provided to partition a large system diagram into smaller,

more manageable units.

 In VTB the user has the option to break a large

schematic diagram into interconnected subsystems. Special

connector entities are provided for this purpose to specify

the connection points between subsystems. Also in VTB,

sections of a schematic diagram can be converted into self-

contained modules which are then represented as single

icons. An advantage of modules is that multiple-instances of

a module, each with its own set of parameters, can appear in

a system or subsystem diagram.

 ESL does not have the equivalence of subsystems, but it

does have the concept of submodels which are similar to

VTB modules (but without the ability to assign parameters).

A submodel may be defined graphically as a block diagram,

or textually in the underlying ESL language. Thus the next

stage of integration was to map the ESL submodel concept

into VTB’s subsystem and module facilities.

3.1. Integration – subsystems

 Since schematic diagrams comprising only ESL

components are essentially no different to schematics of

other types of VTB components, the VTB subsystem

facility can be used to break ESL schematics into smaller

units without the need for software modifications. Figure 2

and Figure 3 show, as an example, an ESL schematic of a

servo system split into two subsystems. Connections

between the subsystems are made through the three

connectors.

Figure 2 – Servo Subsystem 1

Figure 3 – Servo Subsystem 2

3.2. Integration – ESL graphical submodels

 The VTB software includes a Module Designer which

is used to create modules from schematic diagrams. Figure 4

shows the ESL schematic of the complete servo system used

in the previous example, as it appears in VTB, with the

controller, motor, and gearbox sections identified for

conversion into modules.

Figure 4 - Complete Servo System

 The procedure is to import a section of diagram into

Module Designer, where both ports and parameters may be

exposed. This is shown in Figure 5 for the motor section of

the diagram. The same procedure is followed for the other

sections. Any nodes on the diagram may be exposed and

named as module ports. Parameters of any component may

be also renamed and exposed as parameters of the module.

Figure 5 - Motor module being developed

 Figure 6 shows the servo system reconstructed used the

modules created using Module Designer. Two servo

systems are created (with different parameters) to

demonstrate the use of multiple-instances of a single

module.

Figure 6 - Dual Servo System rebuilt with modules

 ESL Solver (the VTB add-in that processes ESL

components) now has the additional task of identifying

module definitions (which are converted into ESL

submodels) and module instances (which are converted into

submodel calls. Figure 7 presents fragments of ESL code

generated from the servo example. The definition of the

Servo_Controller submodel and the two instances of its call

are highlighted.

-- Created by ESL-VTB on 2011-11-19 11:43

EMBEDDED

SUBMODEL Servo_Controller(REAL: e4 := REAL: theta_d; REAL:
theta);
 REAL: SS_SUM_1_x;
 REAL: SS_SUM_1_y;
 REAL: SS_TRF_1_y;
 REAL: SS_SUM_1_z;
DYNAMIC
 e4 := SS_TRF_1_y;
 SS_SUM_1_x := theta_d;
 SS_SUM_1_y := theta;
 SS_TRF_1_y := TRANSFER(27.0(12.8+s)/s(1+0.001*s)) *
SS_SUM_1_z;
 SS_SUM_1_z := SS_SUM_1_x + (-SS_SUM_1_y); -- x + y
END Servo_Controller;
..................
..................

INCLUDE %stepp%;

PACKAGE Esl_Io;
..................
..................
END Esl_Io;
SEGMENT EslGenerate;
..................
..................
DYNAMIC
 SS_SPI_1_LOG := STEPP(SS_SPI_1_TD);
 SS_SPI_1_y := IF SS_SPI_1_LOG THEN SS_SPI_1_K ELSE 0.0;
 SS_SERVO_C_1_e4 := Servo_Controller(SS_SPI_1_y,
SS_SERVO_G_1_theta);
 SS_SERVO_G_1_theta, SS_SERVO_G_1_tog :=
 Servo_Gearbox(SS_SERVO_M_1_thm,
SS_SERVO_G_1_friction);
 SS_SERVO_C_2_e4 := Servo_Controller(SS_SPI_1_y,
SS_SERVO_G_2_theta);
 SS_SERVO_G_2_theta, SS_SERVO_G_2_tog :=
 Servo_Gearbox(SS_SERVO_M_2_thm,
SS_SERVO_G_2_friction);
 SS_SERVO_M_1_thm :=
 Servo_Motor(SS_SERVO_C_1_e4, SS_SERVO_G_1_tog,
SS_SERVO_M_1_Kb);
 SS_SERVO_M_2_thm :=
 Servo_Motor(SS_SERVO_C_2_e4, SS_SERVO_G_2_tog,
SS_SERVO_M_2_Kb);
..................
..................
END EslGenerate;

Figure 7 - ESL code using submodels

3.3. Integration – textual submodels

 A stated objective of the ESL-VTB integration was to

provide a means of including ESL language code as part of

a simulation. This could be achieved by providing a means

of importing ESL textual submodels into a VTB schematic

diagram. Although this was already possible through the

general ability to extend the standard set of ESL entities (a

user could specify a submodel call using the EslEntityXml

parameter in Entity Designer – see [Pearce and Kraft

2011]), an automated method has been implemented in the

form of an ESL Submodel to VTB Entity tool (shown in

Figure 9). This gives the VTB user direct access to both

existing ESL submodel libraries and newly created

submodels.

 The user invokes the tool, and can press the Load ESL

Submodels button to select one or more files of ESL source

code containing submodels. The tool identifies them, and

their interface - the input and output arguments of the

submodel. The user can click the Create VTB Entities button

to initiate the creation of VTB entity components for the

submodels, which are installed into a deployment folder for

use by the VTB Entity Designer and Schematic Designer.

 The tool creates a functional basic block icon with the

appropriate ports corresponding to the inputs and outputs.

However, it is expected that users will want to make use of

the VTB Entity Designer to tailor the entity's icon to

improve its appearance and to suit their requirements. Prior

to the creation, the user can specify a number of attributes

for the submodels, such as the name and prefix for the

desired VTB entity and the names in VTB for the input and

output ports. If an input to the submodel has been declared

as Constant in the ESL source code it will be expressed as a

parameter of the VTB entity. Otherwise the user may select

whether the input should be a parameter or be an input port

for the VTB entity. In addition, default values may be

specified for parameters.

 As an example, Figure 8 shows the ESL source code for

a simple linear dc motor submodel. Note that Constant input

arguments La, Ja and Ba will be pre-selected in the tool as

parameters, whereas the user has the choice of allowing the

remaining input arguments to map to entity input ports or

selecting them as parameters.

Submodel dc_motor(Real: ia, wa, ve := Real: va, tl, Kt, Kb, Ra;
Constant Real: La, Ja, Ba);
 Real: vb, tm, ta;

 Initial

 Dynamic
 ve := va - vb;
 ia := Transfer(1/(La*s + Ra))*ve;
 tm := Kt*ia;
 ta := tm - tl;
 wa := Transfer(1/(Ja*s + Ba))*ta;
 vb := Kb*wa;
 End dc_motor;

Figure 8 - ESL code for dc motor

 Figure 9 shows the tool with the dc motor submodel file

loaded (along with a second file containing the three servo

system submodels). The entity name, prefix and the names

of the input and output ports have been changed; input

arguments Kt, Kb and Ra have been selected as entity

parameters and all parameters have been assigned default

values. All submodels are selected (as shown by the left-had

side checkboxes) for VTB entity creation.

Figure 9 - ESL Submodel to VTB Entity tool

 Figure 10 shows the created entity as it would appear in

Entity Designer, at which stage the icon appearance could

be tailored if desired.

Figure 10 - dc motor entity in Entity Designer

 Figure 11 shows the newly created entity in use in

Schematic Designer. The entity is selected and its

parameters are displayed in the right-hand panel.

 One significant advantage of mapping ESL submodels

(whether graphical or textual) into VTB modules or entities

is the exposure of parameters, a feature currently not

available in the ESL simulation environment.

 The tool creates the VTB entity by forming a VTE file –

using the VTB entity name and with extension .vte which

the VTB Entity and Schematic Designers can read. It forms

the file by inserting specific information – obtained from the

ESL submodel code and supplemented by user input – into a

template. The template is provided in the form of an

external file vte-template.xml located in the same directory

as the tool. The created entity VTE file is deployed by

putting it in a subdirectory under the user's Personal

(Documents and Settings) named:

Figure 11 - Entity used in Schematic Designer

"VTB\CommonFolders\Engines\Esl Submodel Entities" –

where the VTB Designers look for entity components. The

name of the deployment folder may be changed by the user,

for example, to keep together submodel entities relating to a

particular project.

 The tool maintains a catalogue of submodels (Figure

12) for which it has created VTB entities. When the user

loads one or more files, the tool checks to see if any file and

submodel pair match any in its catalogue. If so it presents a

Catalogue Matches dialog which allows the user to select to

replace the VTB entity with the current one when the Create

VTB Entities button is pressed. Any settings that may have

been changed when the previous entity was created, such as

entity name, prefix and argument settings will be picked up

if they have a correspondence in the new submodel. The

user may press a Check Catalogue button at any time to

invoke this dialog on all loaded submodels to remove or

change the current replacements. If no replacement is

specified when the Create VTB Entities button is pressed, a

new VTB entity is created and deployed.

Figure 12 - Entity Catalogue

4. THE NEXT STAGE

 The major outstanding task which is currently being

addressed in this project is to allow the construction and

execution of a schematic comprising both coupled ESL

components and non-ESL components (i.e. those requiring a

different solver). This will require special crossover

components having both ESL and non-ESL ports (signal

ports, for example). Once completed, this will enable truly

integrated simulations to be developed – using both native

VTB solvers and external third-party simulation software.

5. CONCLUSION

 Large-scale simulations require the use of widely

differing modelling tools. As part of an on-going research

project further aspects of the integration of different

simulation modelling tools have been examined with

particular emphasis on modularization. Using the example

the integration of ESL and the VTB, techniques of mapping

ESL’s submodel structures onto VTB modules have been

described. Graphically described ESL submodels are

mapped into VTB modules whereas external ESL textual

submodels are converted to VTB entities. The overall

objective of providing users with access to different

simulation tools from a single environment has been

advanced.

Acknowledgements

 This research has been supported by the Office of

Naval Research through Award No. N00014-10-1-0625.

The authors also acknowledge the contributions of Blake

Langland and Rod Leonard of the University of South

Carolina.

References
Crosbie, R.E., Hay, J.L. and Pearce, J.G. 1981. “Simulation

Studies with Modern Computer Structures”. Final Report,

(ESTEC Contract 4155/79), ESTEC, Noordwijk, The

Netherlands.

Dougal, R.A. 2005. “Design Tools for Electric Ship Systems.” In

Proceedings of IEEE Electric Ship Technologies Symposium,

(Philadelphia PA, July 25-27). IEEE, 8-11.

Hay, J.L., Pearce, J.G., Crosbie, R.E. and Pallett, S. 1994. “ESL

Simulation Tool”. Final Report, (ESTEC Contract

10011/92/NL/JG Work Order No. 2), ESTEC, Noordwijk, The

Netherlands.

Pearce, J.G. 2007. “Interfacing the ESL Simulation Language to

the Virtual Test Bed”. In Proceedings of the 2007 Western

Multiconference on Computer Simulation, (San Diego, CA, Jan

14-17). SCS, San Diego, CA, 166-171.

Pearce, J.G. 2008. “Simulation advances using the ESL Simulation

Language and the Virtual Test Bed”. In Proceedings of the 2008

Grand Challenges in Modeling & Simulation Conference

(GCMS), (Edinburgh, Scotland UK, June 16-18). SCS, San

Diego, CA, 285-290.

Pearce, J.G. and Crosbie, R.E. 2000. “ESL-ISE - A Simulation

Tool Developed for the Space Industry”. In Proceedings of the

2000 International Conference on Simulation and Multimedia in

Engineering Education, (San Diego, CA, Jan 23-27). SCS, San

Diego, CA, 115-120.

Pearce, J.G. and Kraft, R.J. 2011. “Multi-discipline, Multi-tool

Simulation Developments” In Proceedings of the 2011 Grand

Challenges in Modeling & Simulation Conference (GCMS),

(The Hague, Netherlands, June 27-29 June). SCS, Vista, CA,

246-251.

Biography
 John Pearce received his BSc in Electrical Engineering in

1970 and PhD in Computer Simulation in 1973 from the

University of Salford, UK. He held a Research Fellowship for four

years in the Department of Electrical Engineering at the University

of Salford where he worked on the of Simulation of Atomic

Collision Processes and the development of Continuous System

Simulation Languages. This was followed by a period of some

twenty-six years as a full-time member of academic staff in the

same department. He continued to develop his interest in System

Simulation and CSSLs and, together with John Hay and Roy

Crosbie, developed the ISIS and ISIM simulation languages. From

1986 he has been associated with ISIM International Simulation

Limited where he contributed to a series of research contracts with

the European Space Agency leading to was the creation of the ESL

simulation language. From 2007 he has contributed to a series of

simulation projects funded by the US Office of Naval Research

through California State University, Chico and the University of

South Carolina. This has included providing support for multi-rate

simulation, and the integration of ESL with the USC’s Virtual Test

Bed (VTB) software. He also continues to work part-time as a

lecturer at the University of Salford.

 Ryllan Kraft graduated in Natural Sciences, specialising in

Physics, from Cambridge University, UK and went on to do

research at the Institute of Astronomy. Following that he went into

commercial computing consultancy and worked for some years in

California, USA, and in Sweden. Returning to the UK, he led a

team developing real-time industrial knowledge based systems for

many years, and in the course of that worked with John Pearce and

ISIM to integrate simulations with knowledge based systems.

More recently he has worked in the area of computer based

gaming. The areas of computing he has worked on include image

analysis, graphics applications, real-time telecommunications,

knowledge engineering & knowledge based systems, databases and

computer games.

